
Applied WPF: Text
and Documents

Objectives

After completing this lab, you should
understand how to use the following
WPF features:

TextBlock
Inline text elements
FlowDocument
Block text elements
Document reader controls

Overview

In this lab, you will explore the
TextBlock’s formatting capabilities.
Then you will look FlowDocument and
the associated reader controls. Finally,
you will modify the lab manual viewer
to make use of FlowDocuments.

Part 1 – TextBlock

While TextBlock is the simplest
framework element for rendering text, it
is still remarkably powerful. In this first
section, you will try out a variety of the
features it offers.

1.

2.

3.

Run XamlPad. Save any content
you wish to keep, and then start
with a blank Grid:

<Grid
xmlns="http://

schemas.microsoft.com/
winfx/2006/xaml/presentation"

xmlns:x="http://
schemas.microsoft.com/
winfx/2006/xaml">

</Grid>

Add a TextBlock element. Set
its FontSize to 30. Add some
text as the content of the
TextBlock element. Type
enough that it is too wide for the
window. Notice that the line is
truncated.

Add a TextWrapping="Wrap"
attribute. The text now wraps
across multiple lines in order to

4.

5.

6.

7.

fit.

Make sure your text contains
some long words.
(Antidisestablishmentarianism
and floccinaucinihilipification
are popular choices.) Make the
window narrower, and these
words will start to stand out, as
they defeat the attempts of the
TextBlock to format the text.
Set the IsHyphenationEnabled
property to True, to alleviate
this problem.

Add lots more text, so that it
wraps over several lines. Notice
that the right hand edge is
‘jagged’ – the line ends are not
aligned. Add a
TextAlignment="Justify"
attribute to the TextBlock. WPF
will now pad out the spacing
between words in order to make
both the lines of equal length.
Try the other alignment options:
Center, Right, and (the default)
Left.

Pick some subset of the words
you’ve typed in, and wrap them
with an <Italic> element. The
relevant text should change to
an italic style. Try the other
inline elements Bold and
Underline. Try making them
overlap – you can nest these
elements, but you will not be
able to use this kind of style:
<Bold>This <Italic>is </
Bold>not</Italic> legal. XAML
must always be well-formed
XML.

These elements all derive from
Span, and are just convenient
classes – you can achieve the
same things using Span.
Replace each of these elements
with an equivalently configured
Span:

a.

b.

c.

For Italic, set the Span’s
FontStyle to Italic.
For Bold, set the Span’s
FontWeight to Bold.
For Underline, set the
TextDecorations to

8.

9.

10.

11.

Underline.
(TextDecorations also
supports Overline,
StrikeThrough, and
Baseline. You can
combine these by
providing a comma
separated list of
decorations.)

Introduce some line breaks wi
the <LineBreak /> element

Add the following to see the
effect of the BaselineAlignme
property.

E = mc<Span
BaselineAlignment="Superscr
t" FontSize="18">2

Set the Background property o
a Span to a brush, such as
“Yellow”.

Set the FontFamily of a Span t
a font, such as “Palatino
Linotype”.

Part 2 – FlowDocument and
Block Elements

Powerful as it is, the TextBlock is
mainly aimed at presenting fairly sma
volumes of text. It can just about stret
to multiple paragraphs with its
LineBreak element, but it is not well
suited to long documents. It does not
provide features such as tables, lists,
figures. It does not make it
straightforward to identify a single
paragraph for formatting purposes. It
cannot easily be split into pages for
printing or paginated on-screen
display. It cannot arrange text to flow
around multiple features, being limite
to a single column of layout.

FlowDocument is able to do solve all
these problems. However, unlike
TextBlock, it cannot be used in isolati
– a FlowDocument is simply a
description of a document. Viewer
controls (or the printing API) must be
used in order to render the document.

In this section, you will become famili

with the block-level features
FlowDocument offers, building on the
inline elements available in TextBlock.
(FlowDocument can use any of the
inline elements you’ve already seen.)

1.

2.

3.

4.

In XamlPad, convert the
previous work into a
FlowDocument-based example:

a.

b.

c.

d.

Wrap the TextBlock in a
FlowDocumentScrollVie
wer element.
Change the TextBlock to
a FlowDocument.
Remove the
TextWrapping attribute.
(FlowDocuments always
wrap.)
Wrap the content of the
FlowDocument in a
Paragraph element

XamlPad should be happy
enough to display the document
at this point. However, it’s not
quite entering into the spirit of a
flow document – new
paragraphs are being indicated
by LineBreak elements. This
works, but the usual way to
indicate a paragraph in a
FlowDocument is to wrap it in a
Paragraph element, rather than
to put LineBreak elements in
between each paragraph. So any
place you have a LineBreak,
replace it by closing off the
current Paragraph tag and then
opening a new Paragraph tag.

Next, add a List element. This
should come between some
paragraphs, or after the final
paragraph. Within the List, add
a ListItem element. Inside this,
add a Paragraph. Inside the
paragraph, add some text – as
you’d expect, you can use and
of the elements you’ve been
using in paragraphs outside of a
list. Add some more ListItems,
each with paragraphs of their
own.

By default, List shows a
bulleted list. However, by
setting the MarkerStyle

5.

6.

7.

property, you can change how
each item is marked. The
available options are Box,
Circle, Decimal, Disc,
LowerLatin, LowerRoman,
Square, UpperLatin,
UpperRoman, and None. Try a
few of these.

Add the following markup to
put a table into the text:

<Table Background="#eef"
BorderBrush="Black"
BorderThickness="1">
 <TableRowGroup>

<TableRow
FontWeight="Bold">

<TableCell><Paragraph>Foo</
Paragraph></TableCell>

<TableCell><Paragraph>Bar</
Paragraph></TableCell>

<TableCell><Paragraph>Quux</
Paragraph></TableCell>
 </TableRow>
 <TableRow>

<TableCell><Paragraph>One</
Paragraph></TableCell>

<TableCell><Paragraph>Two</
Paragraph></TableCell>

<TableCell><Paragraph>Three</
Paragraph></TableCell>
 </TableRow>
 </TableRowGroup>
</Table>

Experiment with the table layout
– try adding extra cells to a row,
and see how the column count
adapts dynamically. Add extra
TableRowGroup elements –
these allow you to apply a
consistent set of formatting to a
set of rows. Try using the
TableCell’s RowSpan and
ColumnSpan properties – these
work in a similar way to the
equivalent Grid properties.

The Floater element allows you
to anchor some content to a
particular point in the document,
but have the content itself
rendered outside of the main
flow. The main document will
then flow around the floater. Try
adding this inside one of your
paragraphs:

<Floater BorderBrush="Black"
BorderThickness="1"
Width="200">

8.

 <Table>
 <TableRowGroup>
 <TableRow>

<TableCell
TextAlignment="Center"
Background="#EEE">

<Paragraph
Margin="4">Hello, world!</
Paragraph>
 </TableCell>
 </TableRow>
 <TableRow>

<TableCell
TextAlignment="Center">

<Paragraph
FontStyle="Italic">Figure 1
A software

development
classic</Paragraph>
 </TableCell>
 </TableRow>
 </TableRowGroup>
 </Table>
</Floater>

The Floater is technically an
Inline element because it is
placed within a paragraph, at t
point at which you would like
the floater to be anchored.
While the floater appears
outside of the main flow, its
position is influenced by wher
it appears. If you have a
particularly long paragraph, try
changing the position at which
you insert the floater, to see ho
this changes its position on
screen.

Despite being an Inline, Floate
only makes sense in the contex
of a FlowDocument, so you
cannot usefully use it in a
TextBlock.

Finally, change the Floater to
Figure. This allows you to
change the placement of the
figure – rather than having to b
next to its anchored paragraph
you can indicate that it should
appear on a particular position
on the page containing the
anchor. This is controlled with
the VerticalAnchor and
HorizontalAnchor properties.
However, these only function
fully with paginated display. F
this we need to use a different
document reader control.

Part 3 – Document Reader
Controls

In the previous section, you used the
FlowDocumentScrollViewer control.
This provides the simplest display – a
linear scrolling top-to-bottom view of
the document. However, it doesn’t
necessarily make the most effective use
of space, particularly if a lot of width is
available. Moreover, it cannot use
page-oriented document features such
as figure placement.

In this step you will look at the
alternative ways of presenting a
FlowDocument.

1.

2.

3.

4.

Change the
FlowDocumentScrollViewer to
a FlowDocumentPageViewer.
This will change to a paginating
display, and it will break the
text into columns if space is
available.

Experiment with the anchoring
of your figure now that you
have a paginated columnar
view. Set both VerticalAnchor
and HorizontalAnchor to
PageCenter – the figure should
appear in the middle of the
page, with columns flowing
around it.

The reader control offers
zooming and paging controls.
Try changing the zoom to see
how it reformats the document
to suit. Also try resizing the
window to see how it adapts to
make use of the space.

Change the reader to a
FlowDocumentReader. This lets
the user select which of the
viewing modes to use – it offers
buttons to select between the
scrolling and the paged mode. It
also offers a two-page view,
which feels similar to how the
content would look if printed
out double sided and read as a
booklet.

Part 4 – Using
FlowDocuments in
LabManualViewer

The LabManualViewer currently uses
TextBlock for all of its pages. It would
be better to use FlowDocument, as this
allows for much more flexible content.
So you will now modify the application
to use FlowDocuments.

1.

2.

3.

4.

5.

6.

7.

Open your LabManualViewer
project. (Or use the one
provided as a starting point in
this lab’s Before directory.)

Remove all the pages except for
the Quiz.xaml from the Pages
folder. Leave Quiz.xaml and
Quiz.xaml.cs in place.

Add in the replacement versions
in the Pages directory for this
lab.

Open one of these files up – see
how these are now
FlowDocuments instead of
Pages.

Run the application. Note that
we’re very nearly done – it turns
out that the Frame class is as
happy to display
FlowDocuments as it is Pages.
(It uses the
FlowDocumentReader, allowing
the user to choose their reading
style.)

The main problem is that we
now have two zoom controls –
the one we added earlier, and
the one built into the document
reader control. Remove the
Slider in Window1 that provides
zoom facilities. And remove
both the corresponding event
handler code, and the code that
sets the
zoomSlider.DataContext in the
codebehind.

Now, your zoom setting
handling code won’t be
working. Add the following
helper in Window1.xaml.cs to
locate the
FlowDocumentReader:

FlowDocumentReader FindReader
(DependencyObject elem)

8.

{
int c =

VisualTreeHelper.GetChildre
ount(elem);

for (int i = 0; i < c;
+i)
 {

DependencyObject
child =
VisualTreeHelper.GetChild
(elem, i);

FlowDocumentReader
= child as
FlowDocumentReader;

if (r == null)
 {

r = FindReader
(child);
 }

if (r != null)
 {

return r;
 }
 }

return null;
}

Use this in the 100% zoom
menu item click handler:

void zoom100Menu_Click(obje
sender, RoutedEventArgs e)
{

FlowDocumentReader rdr
FindReader(contentArea);

if (rdr != null)
 {
 rdr.Zoom = 1;
 }
}

Conclusion

In this lab, you used the TextBlock’s
formatting capabilities. Then you
looked at how FlowDocument builds
these, adding paragraphs, lists, and
tables. Finally, you modified the lab
manual viewer to make use of
FlowDocuments.

